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Abstract. Population-level estimates of species’ distributions can reveal fundamental eco-
logical processes and facilitate conservation. However, these may be difficult to obtain for
mobile species, especially colonial central-place foragers (CCPFs; e.g., bats, corvids, social
insects), because it is often impractical to determine the provenance of individuals observed
beyond breeding sites. Moreover, some CCPFs, especially in the marine realm (e.g., pinnipeds,
turtles, and seabirds) are difficult to observe because they range tens to ten thousands of kilo-
meters from their colonies. It is hypothesized that the distribution of CCPFs depends largely
on habitat availability and intraspecific competition. Modeling these effects may therefore
allow distributions to be estimated from samples of individual spatial usage. Such data can be
obtained for an increasing number of species using tracking technology. However, techniques
for estimating population-level distributions using the telemetry data are poorly developed.
This is of concern because many marine CCPFs, such as seabirds, are threatened by anthro-
pogenic activities. Here, we aim to estimate the distribution at sea of four seabird species, forag-
ing from approximately 5,500 breeding sites in Britain and Ireland. To do so, we GPS-tracked
a sample of 230 European Shags Phalacrocorax aristotelis, 464 Black-legged Kittiwakes Rissa
tridactyla, 178 Common Murres Uria aalge, and 281 Razorbills Alca torda from 13, 20, 12,
and 14 colonies, respectively. Using Poisson point process habitat use models, we show that
distribution at sea is dependent on (1) density-dependent competition among sympatric con-
specifics (all species) and parapatric conspecifics (Kittiwakes and Murres); (2) habitat accessi-
bility and coastal geometry, such that birds travel further from colonies with limited access to
the sea; and (3) regional habitat availability. Using these models, we predict space use by birds
from unobserved colonies and thereby map the distribution at sea of each species at both the
colony and regional level. Space use by all four species’ British breeding populations is concen-
trated in the coastal waters of Scotland, highlighting the need for robust conservation
measures in this area. The techniques we present are applicable to any CCPF.

Key words: animal tracking; central-place foraging; coloniality; density dependence; habitat use; Poisson
point process; species distribution models.

INTRODUCTION

Accurate distribution estimates are key to effective
wildlife management yet many colonial central-place

foragers (i.e., those that return regularly to a common
breeding location or refuge) are difficult to observe
because they range so widely. Innovations in telemetry
are increasingly making it possible to track these species
at the individual level (Wikelski et al. 2007, Hart and
Hyrenbach 2010, O’Mara et al. 2014), but both theoreti-
cal and analytical advances are needed before unbiased,
population-level, distribution estimates can be derived
from the resulting data (Aarts et al. 2008, Hebblewhite
and Haydon 2010). This is of concern because many
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colonial central-place foragers are currently suffering
unsustainable declines due to human activities (Mickle-
burgh et al. 2002, Williams and Osborne 2009, Hamann
et al. 2010).
Seabirds are one of the world’s most endangered avian

groups (Croxall et al. 2012). This is due to anthropogenic
impacts including invasive species, fisheries bycatch, pol-
lution, and direct exploitation. The distribution and size
of seabird breeding colonies has been recorded directly in
many regions. In contrast, the distribution of birds at sea
is generally estimated from visual survey or more
recently, tracking data. Systematic surveys from ships or
planes began in earnest in the 1970s (Ainley et al. 2012).
They provide coarse-scale (1–10 km) Eulerian data (i.e.,
observations at fixed points in space) but cannot reliably
ascribe provenance or, in many cases, life history stage.
Hence, colony-level distributions cannot be estimated
using this technique. Since the 1990s, it has also been fea-
sible to track the movements of seabirds using bird-borne
devices, which are now becoming sufficiently small and
cost-effective to obtain statistically robust sample-sizes
for a wider range of species (Burger and Shaffer 2008).
Devices are usually deployed at colonies so the origin
and status of tracked birds are known. However, while
GPS tracking is now providing a wealth of fine scale
(10�2 km) Lagrangian data (i.e., observations following
the animal in space) on distribution, these tend to be
from a relatively small proportion of colonies.
Comparatively few studies have so far tracked birds

from multiple colonies within metapopulations (Fred-
eriksen et al. 2011, Wakefield et al. 2013, Dean et al.
2015) or across species (Block et al. 2011, Raymond
et al. 2015) and fewer still have attempted to estimate the
distribution of birds from unsampled colonies using such
data (Wakefield et al. 2011, Raymond et al. 2015, Torres
et al. 2015). Hence, there is little information on the rela-
tive distributions of seabirds from most colonies. This is
important both because it hampers conservation (Lewi-
son et al. 2012) and because such information can reveal
aspects of the ecology of colonial central-place foragers
that have important wildlife management implications
(Wakefield et al. 2009). For example, theory predicts that
density-dependent competition among seabirds breeding
in the same colony (sympatric competition), mediated
either through prey depletion or disturbance, leads to a
positive relationship between colony size and foraging
range, ultimately regulating colony growth (Ashmole
1963, Lewis et al. 2001). Similarly, density-dependent
competition between colonies (parapatric competition)
may lead to spatial segregation of the utilization distribu-
tions (UDs) of adjacent colonies (Wakefield et al. 2013;
a UD is defined as a population’s spatial probability dis-
tribution; Fieberg and Kochanny 2005). Evidence has
been advanced in support of both hypotheses (Lewis
et al. 2001, Masello et al. 2010, Catry et al. 2013) yet it
remains uncertain how sympatric and parapatric intra-
specific competition, foraging costs (which increase with
distance from the colony) and resource availability

interact to shape the UDs of breeding seabirds and other
colonial central-place foragers (Wakefield et al. 2013).
For example, the size and shape of colony UDs depend
on the density of conspecifics but this is a function not
only of colony size and resource availability but also the
area of sea accessible from that colony, which in turn var-
ies with coastal morphology (Birkhead and Furness
1985). Hence, we might predict birds breeding at colonies
with restricted access to the sea travel further than those
breeding on isolated islands. Moreover, although it is
clear that seabirds breed in hierarchically nested aggrega-
tions (i.e., with increasing scale, nests within sub-colo-
nies, within colonies, within islands, archipelagos, etc.) it
is not clear how these aggregations function as groups or
independently at different scales (Wakefield et al. 2014).
Colonies, defined subjectively during censuses, may not
therefore correspond to functional units.
Despite these uncertainties, it is clear that while some

threats to seabirds are widespread (e.g., climate change)
others, such as offshore windfarms, episodic pollution
incidents, fisheries bycatch, and the depletion of fish
stocks, may be localized, impacting colonies within
wider metapopulations unequally (Furness and Tasker
2000, Inchausti and Weimerskirch 2002, Montevecchi
et al. 2012). Hence, colony-level distribution estimates
may be required in order to target and monitor conser-
vation measures, such as Marine Protected Areas
(MPAs) or fisheries closures, effectively (Lascelles et al.
2012, Russell et al. 2013).
Current barriers to estimating colony-level distributions

via individual tracking are both logistical and analytical:
for most species, it would be impractical to track birds
from all colonies. In theory, distribution could be pre-
dicted from tracked birds from a sample of colonies by
modelling space use as a function of habitat, foraging
costs, competition, etc. (Aarts et al. 2008, Wakefield et al.
2009, 2011, Catry et al. 2013). However, statistical tech-
niques for producing unbiased estimates of distribution
using tracking data are still in development (Aarts et al.
2008, Patterson et al. 2008, Illian et al. 2012). This is
partly because tracking data violate many of the assump-
tions inherent to conventional parametric models (re-
viewed by Turchin 1998, Aarts et al. 2008, Wakefield
et al. 2009). Repeat observations on individuals (typically
102–104 locations/individual in seabird studies) tend to be
spatiotemporally autocorrelated and the movements of
individuals drawn from the same colony may be depen-
dent on one another due to public information transfer
and cultural and genetic divergence (Wakefield et al. 2013,
Paredes et al. 2015). Furthermore, tracking data record
the presence of animals but not their absence (Aarts et al.
2012). In order to account for these attributes, habitat use
by tracked animals has been modelled using logistic
mixed-effects models (Aarts et al. 2008, Wakefield et al.
2011). This entails the construction of a binary response
variable, which comprises animal locations and randomly
generated pseudo-absence points. However, the logistic
model approximates an inhomogeneous Poisson point
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process (IPP) model (Cressie 1993, Aarts et al. 2012),
which may be fitted more directly and efficiently by using
numerical quadrature to approximate the model’s pseudo-
likelihood (Berman and Turner 1992, Baddeley and
Turner 2000, Warton and Shepherd 2010; (see Methods
for details). This approach may therefore be more tract-
able for GPS tracking data sets, which typically comprise
103–104 locations per individual. A further substantial
problem is that habitat selection may vary between colo-
nies due to differences in the relative availability of prey
and habitats among those colonies (e.g., Chivers et al.
2012, Paredes et al. 2012), a phenomenon termed func-
tional response in resource selection (Mysterud and Ims
1998). As such, habitat selection models fitted to data
from one site may predict poorly for others (Torres et al.
2015). Matthiopoulos et al. (2011) show that Generalized
Functional Response (GFR) models can interpolate usage
to unsampled sites more accurately than conventional
habitat selection models. GFR models require that usage
is sampled under a range of availability regimes allowing
the response to environmental covariates to be condi-
tioned on the expected site-level availability of all environ-
mental covariates in the model.
Britain and Ireland are home to internationally impor-

tant populations of breeding seabirds (Fig. 1). These
include 34% of the world’s European Shags Phalacrocorax

aristotelis (26,600 pairs), 20% of its Razorbills Alca torda
(93,600 pairs), 13% of its Common Murres Uria aalge
(708,200 pairs), and 8% of its Black-legged Kittiwakes
Rissa tridactyla (378,800 pairs) (Mitchell et al. 2004).
Our study focuses on these species, referred to hereafter
as Shags, Razorbills, Murres, and Kittiwakes. Although
the foraging niches of these species partially overlap,
they are differentiated along several axes. In Britain and
Ireland, all are almost exclusively neritic while breeding,
feeding primarily on sandeels (Ammodytes spp.) and
other small fish and crustaceans (Gr�emillet et al. 1998,
Watanuki et al. 2008, Thaxter et al. 2010). Shags forage
either benthically or pelagically (maximum dive depth
~60 m) in coastal waters, relatively close (≤~30 km) to
their colonies (Gr�emillet et al. 1998, Watanuki et al.
2008, Bogdanova et al. 2014). Kittiwakes, Murres, and
Razorbills are more wide ranging, foraging tens to hun-
dreds of kilometers from their colonies. Kittiwakes are
surface feeders; Murres make relatively long, deep, for-
aging dives to the pelagic and demersal zones; while
Razorbills make more frequent, shallow, dives to the
pelagic zone (Thaxter et al. 2010, Linnebjerg et al.
2013). There is some evidence that Kittiwakes from adja-
cent colonies segregate in space while foraging (Ainley
et al. 2003, Paredes et al. 2012) but nothing is known
about this phenomenon in the other species.

FIG. 1. Breeding distribution and individual movement data used to estimate the distribution at sea of seabirds foraging from
UK colonies. Panels a, c, e, and g show numbers of apparently occupied nests recorded during the Seabird 2000 census (Mitchell
et al. 2004; red indicates study colonies). Panels b, d, f, and h show tracks of individual birds (colors correspond to colonies). Places
mentioned in the text are shown in the upper right panel: CS, Colonsay; DB, Dublin Bay; FH, Flamborough Head; GW, Galway
Bay; IL, Islay; IS, Isles of Scilly.
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In a recent assessment of conservation status in the
UK, Shags and Kittiwakes were reclassified from amber
to red due to 62% and 71% declines, respectively, over
25 years (Eaton et al. 2015). In the UK, Murres and
Razorbills are amber listed due to their restricted range
and international importance (Eaton et al. 2015), while
internationally Razorbills have recently been reclassified
from Least Concern to Globally Near-threatened (Bird-
Life International 2015). Current declines are thought to
be due in part to falls in prey stocks (especially sandeels
in the northern North Sea), due to over fishing and
climate change (Frederiksen et al. 2007, Cook et al.
2014). Kittiwakes are also regarded to be particularly
vulnerable to wind farm developments, which are bur-
geoning in UK waters (Furness et al. 2013). The diving
species face ongoing threats from oil spills (Williams
et al. 1995, Votier et al. 2005) and gill nets (�Zydelis et al.
2013). Domestic and international legislation and agree-
ments require countries to manage and conserve seabirds
(Croxall et al. 2012). Two measures adopted by govern-
ments in UK and elsewhere in the European Union that
contribute to seabird conservation are the extension of
existing colony-based Special Protection Areas (SPAs)
for seabirds to adjacent waters that are used for “mainte-
nance activities” (e.g., foraging, courtship, etc.) and sec-
ondly, the establishment of marine SPAs around
important foraging areas (Garthe et al. 2012, Perrow
et al. 2015). However, both marine protected area identi-
fication and wider spatial planning at sea are being ham-
pered by a lack of colony-specific distribution estimates
(Perrow et al. 2015). In the absence of such information,
policy-makers frequently make the unrealistic assump-
tion that seabirds are uniformly distributed out to some
threshold distance from their colonies, such as their
putative maximum foraging range (Thaxter et al. 2012).
The main aim of our study is to estimate the coarse

scale (1–10 km) metapopulation and colony-level utiliza-
tion distributions of four species of seabirds breeding in
Britain and Ireland during the late incubation and early
chick-rearing periods. To do so, we tracked birds from a
sample of colonies drawn from throughout the geograph-
ical, environmental, and colony size range of our study
species in Britain and Ireland and modelled their distri-
butions as functions of colony distance, sympatric and
parapatric intraspecific competition, coastal morphol-
ogy, and habitat availability. In so doing, we estimate the
distribution of birds from >5,500 breeding sites. Further,
we specifically explored the marine distributions of birds

from all colonies designated as SPAs, in order to estab-
lish the extent, and intensity of usage, of the marine areas
required by individuals from these protected breeding
locations.

MATERIALS AND METHODS

Tracking data collection

We carried out fieldwork at seabird colonies around
the coast of Britain and Ireland during May-July 2010–
2014, when the study species were either approaching
the end of the incubation period or raising small chicks.
We stratified sampling effort to reflect the northwards
bias in the breeding distribution of seabirds in the region
(Mitchell et al. 2004). We caught birds while they
attended their nests, either by hand or using a wire noose
or crook fitted to a pole, and temporarily attached a
modified i-GotU GT-120 (Mobile Action Technology,
Taipei, Taiwan) GPS logger to their backs (or rarely, in
the case of Kittiwakes, to their tails) with Tesa tape (Tesa
SE, Norderstedt, Germany). Total instrument mass was
≤3% body mass for all species, except Kittiwakes, for
which it was ≤5% body mass and ≤3% if tail attachment
was used. We programmed loggers to record one posi-
tion every 100 s. Handling time during capture/recapture
was <6 min. GPS deployments were carried out follow-
ing the ethical guidelines of the British Trust for
Ornithology, under license by Scottish Natural Heritage,
Natural England, Natural Resources Wales, the North-
ern Ireland Environment Agency and the National Parks
and Wildlife Service, Ireland.

Data preparation

Diving by tagged seabirds can result in short hiatuses
in tracking data. To estimate missing locations, and to
standardize sampling effort to exactly 100-s intervals, we
resampled GPS tracks data by linear interpolation prior
to further analysis. Due to the need to deploy and
retrieve loggers at the nest, it is normal practice in track-
ing studies of breeding seabirds to record and analyze
bursts of data from one or more complete foraging trip
per individual. However, this usually results in individu-
als being observed for unequal amounts of time because
trip duration typically varies widely among individual
seabirds. To reduce this bias we subsampled tracking
data by randomly selecting a 24-h burst of locations

TABLE 1. Summary of tracking data obtained during the study (see Appendix S2: Table S1 for full details).

Species No. sites No. birds tracked No. birds tracked ≥24 h Median tracking duration (h) Median trip length (h)

Shag 13 239 230 75 (55–94) 1.7 (1.0–2.6)
Kittiwake 20 583 464 42 (25–51) 4.0 (1.6–8.7)
Murre 12 192 178 54 (45–74) 7.5 (2.0–13.1)
Razorbill 14 299 281 70 (50–86) 6.3 (1.8–12.6)

Note:Numbers in parentheses are Interquartile Range IQR.
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from each bird (Table 1). We omitted the small number
of individuals that were tracked for <24 h from our anal-
ysis. We then selected locations recorded when birds were
at sea, categorized according to distance and time from
the nest (see Appendix S1 for details). Prior to analysis,
we projected all spatial data in Lambert Azimuthal
equal area (LAEA) coordinates.

Modelling approach

We modeled habitat use as a function of habitat avail-
ability, accessibility and proxies of intraspecific competi-
tion. In view of the size of the data set (55,000–210,000
locations per species), we fitted IPP models by numerical
quadrature (Berman and Turner 1992, Baddeley and
Turner 2000, Warton and Shepherd 2010) rather than
approximating them using logistic regression (Aarts
et al. 2012). Following Warton and Shepherd (2010),
we modeled the intensity of tracking locations kðyiÞ at
the point i in space as a function of n explanatory
variables:

log kið Þ ¼ b0 þ
Xn
j¼1

ci;jbj (1)

where c is a vector of covariates and b ¼ b0; b1; . . .; bnð Þ
the corresponding parameters. The pseudo likelihood of
IPP models can be estimated by numerical quadrature
(Berman and Turner 1992) as

lIPP b; y; y0;wð Þ �
Xm
i¼1

wi si logki � kið Þ (2)

where y0 ¼ ynþ1; . . .; ymf g are quadrature points (i.e.,
both data and dummy points),
w = (w1, . . ., wm) is a vector of weights,

si ¼ zi=wi and zi ¼ 1 if yi is a data point
0 ifyiis a dummy point

�

The right-hand side of Eq. 2 is equivalent to the likeli-
hood of a weighted log-linear Poisson model, which can
readily be estimated using conventional GLM software
(Baddeley and Turner 2000). We assigned the centroids
of the cells of a regular LAEA grid as dummy points, a
quadrature scheme that ensures even distribution across
the study area (Warton and Shepherd 2010). We then
assigned weights wi = a/ni to each quadrature point,
where ni is the number of points (data or dummy) in the
same cell as the ith point and a is the area of that cell
(Baddeley and Turner 2000). Note that dummy points
are not equivalent to the “pseudo-absence” points used
in some case-control models fitted to tracking data (see
Aarts et al. [2012]).
In order to account for the highest level of grouping in

the tracking data (i.e., breeding colony) we structured
models as mixed-effects GLMs

kk;i �Poisson lk;i
� � ) E kk;i

� �� lk;i

log lk;i
� � ¼ offset nkð Þ þ b0 þ

Xm
j¼1

xi;jbj þ uk
(3)

where kk,i is the intensity of locations of birds from the
kth colony and uk is a random, colony-level, intercept.
The offset term is included to standardize model predic-
tions because the number of birds tracked nk varied
across colonies. Each bird was tracked for a period of
24 h so the response lk,i is the expected number of track-
ing locations at sea per bird per day per unit area from
the kth colony. Normalized to sum to unity over all grid
cells this approximates the colony-level utilization distri-
bution UDk. The inclusion of the colony-level random
intercept necessitated a separate set of dummy points for
each colony: for the kth colony, we therefore generated
dummy points and weights within the sea area accessible
from each colony, which we define as that lying <dmax

from that colony, where dmax is 1.19 the maximum for-
aging range observed across colonies in our study (Shags
35 km, Kittiwakes 300 km, Murres 340 km, Razorbills
305 km). In the absence of theoretical estimates of the
maximum foraging ranges for our study species, we used
the maximum observed foraging range. We apply the
multiplier 1.1 to ensure that the quadrature grid encom-
passes the areas bounded by the putative maximum for-
aging range. Models were fitted using the R package
lme4 (Bates et al. 2015).
Warton and Shepherd (2010) show that the accuracy

of the quadrature approximation method described
above increases as the ratio of dummy points to data
increases. During model development we investigated
this effect by fitting single covariate models to data sets
generated using quadrature grids of varying resolutions.
We found that, within the computationally practicable
range of scales, parameter estimates did not converge
with increasingly finer scale (Appendix S1: Fig. S1).
Hence, following Warton and Shepherd (2010), we con-
ducted our analysis at the finest resolution practicable.
This was 0.5 km for Shags (55,436 tracking locations;
150,557 dummy points) and 2 km for the other species
(range 82,741–206,413 tracking locations; 417,578–
806,384 dummy points.

Model selection

Eq. 3 assumes independence among data (Baddeley
and Turner 2000) yet animal tracking locations are
repeated measures on individuals and tend to be serially
and spatially autocorrelated (Aarts et al. 2008). Hence,
the standard errors provided should be treated as rela-
tive rather than absolute. The full likelihood of Eq. 3 is
unknown, precluding the provision of P values or model
selection using conventional information criteria.
Rather, we used k-folds cross-validation to compare the
out-of-sample predictive performance of models based
on the similarity between the observed and predicted
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utilization distributions (Fewster and Buckland 2001).
To do so, we calculated the observed UD of tracked
birds from the kth colony (i.e., the proportion of all loca-
tions of birds tracked from that colony falling in each
cell in the regular grids mentioned above). We then fitted
the model under consideration to data from the remain-
ing colonies, predicted the UD of the kth colony from
this model and calculated the Bhattacharyya affinity
between the observed and predicted UDs

BAk ¼
X
x;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UDobs;kðx; yÞUDpred;kðx; yÞ

q
(4)

BA has previously been used in the contexts of UD com-
parison and model selection (Thacker et al. 1997, Fie-
berg and Kochanny 2005). It ranges from 0 (no
similarity) to 1 (identical UDs). We calculated the
weighted mean similarity across colonies

BA ¼
P
Allk

nkBAkP
Allk

nk
(5)

where nk is the number of birds tracked from the kth col-
ony. The contribution to BA of colonies from which lar-
ger numbers of birds were tracked is upweighted because
the UDs of colonies with small samples of tracked birds
are likely to underestimate the area used by the entire
colony (Soanes et al. 2013, Bogdanova et al. 2014).
In order to estimate space use from all colonies in the

study area, we aimed to select the best model from a
field of biologically plausible alternatives. Previous stud-
ies suggest that seabird space use may depend on numer-
ous covariates, including colony distance, density-
dependent competition, and habitat (Wakefield et al.
2009, 2011). The number of plausible alternative models
is therefore large. This, combined with the time taken for
models to converge, precluded backward model selec-
tion. Rather, we built usage models using a stepwise for-
ward selection procedure, adding candidate explanatory
covariates to the intercept-only model in order of their
expected effects sizes. We retained covariates if D BA
was positive, selecting the most parsimonious model if D
BA was tied. In order to compare effect sizes using stan-
dardized partial regression coefficients we standardized
covariates prior to analysis (Schielzeth 2010).

Candidate explanatory covariates

In the absence of other factors, central-place foraging
theory suggests that breeding seabirds should seek prey
as close to their nest sites as possible (Orians and Pearson
1979). First, therefore, we added distance to colony d to
the model, with the expectation that usage would decline
with distance (Dukas and Edelstein-Keshet 1998, Mat-
thiopoulos 2003). Our study species generally avoid
crossing extensive land barriers when commuting (Fig. 1)

so we defined dk,i to be the minimum distance by sea
between the kth breeding site and the ith location, which
we calculated on a 0.5 km (Shags) or 1 km (Kittiwakes,
Murres, and Razorbills) LAEA grid using the R package
gdistance (van Etten 2012, Wakefield et al. 2013). Space
use by breeding seabirds is further modulated by density-
dependent competition among sympatrically breeding
conspecifics (Wakefield et al. 2013, Jovani et al. 2015).
Given that competition is proportional to the density of
animals we next considered whether the area of sea avail-
able to birds from each breeding site, which varies with
coastal geometry, affects usage (Birkhead and Furness
1985). We hypothesize that density-dependent competi-
tion would be higher among birds foraging from colonies
with restricted access to the open sea such that they
would forage further from their colonies than birds from
colonies surrounded by open water. To model this effect,
we considered the addition of Ak,i the cumulative area at
the ith location relative to the kth breeding site, to our
models, where

Ak;i ¼
X
Allx

axdk;x; dk;x ¼ 1 if dk;x � dk;i
0 otherwise

�
(6)

and ax is the area of the xth cell of the LAEA grids men-
tioned above. Exploratory analysis indicated that log-
transforming Ak reduced colinearity with dk, improving
model stability.
We next considered the number of sympatric breeders,

the other determinant of density at sea. We extracted
numbers of apparently occupied nests (AON) recorded
during the most recent complete census of seabird colo-
nies in Britain and Ireland (Seabird 2000, carried out
between 1998 and 2002; see Mitchell et al. [2004] for
methods) from the Seabird Monitoring Programme
(SMP) Database .13 Defining seabird colonies objectively
can be problematic because the degree to which breeding
seabird nests are clustered in space varies with scale
(Wakefield et al. 2014). During the Seabird 2000 census,
AON were recorded by “subsite” (for clarity, simply
referred to as “sites” hereafter). These Mitchell et al.
(2004) nominally defined as segments of coastline <1 km
long, containing clusters of breeding seabirds. However,
for practical reasons fieldworkers were allowed some
scope to deviate from this definition. In practice, sites
sometimes therefore comprise isolated islands or seg-
ments of coastline >1 km long. In the latter cases, we
reassigned sites by splitting the coastline into the mini-
mum possible number of segments ≤1 km long, dividing
AON equally between each. During model selection we
considered several potential proxies of competition from
sympatric breeders. First, the number, N, of conspecific
AONs at the home site. Second, because arbitrary census
divisions may not correspond to ecologically functional
units (Wakefield et al. 2014) we considered proxies that
include conspecifics breeding in the vicinity of the home

13www.jncc.gov.uk/smp
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site of tracked birds. These were the inverse-distance
weighted number of breeding conspecifics

h ¼
X
Allk

Nk

dh;k þ 1
(7)

where Nk is the number of conspecific AON at the kth
site of the set of all breeding sites (including the home
site) within the species’ maximum foraging range, and
dh,k is the distance from the home breeding site to the ith
breeding site. Finally, based on exploratory analyses, we
also considered the square-roots of these indices, as well
as Eq. 3 the inverse-distance weighted square-root num-
ber of conspecific breeders

h0 ¼
X
Allk

ffiffiffiffiffiffiffi
Nk

p
dk;i þ 1

(8)

We considered each of the indices of sympatric com-
petition as a main effect and interaction with A, select-
ing that which resulted in the best improvement in
model performance (step 3).
In addition to sympatric competition, breeding sea-

birds may be subject to competition from conspecifics
breeding at neighboring colonies (Furness and Birkhead
1984; hereafter, parapatric competition [Wakefield et al.
2011]). As with sympatric competition, this is thought to
be density dependent (Wakefield et al. 2013). Our expec-
tation is therefore that birds avoid locations at which the
null density of conspecifics from other colonies is high
(Wakefield et al. 2011, 2013, Catry et al. 2013). In some
systems, this leads to striking patterns of among-colony
spatial segregation (Masello et al. 2010, Wakefield et al.
2013). It has been hypothesized that these are mediated
by individual-level information transfer and cultural
divergence during colony growth (Wakefield et al. 2013).
Current uncertainly about these mechanisms makes this
phenomenon difficult to model satisfactorily but as a first
approximation we considered whether birds avoided areas
in which the null density of conspecifics from other colo-
nies was greater than that from their own (Catry et al.
2013). Taking the best models from previous steps (here-
after models I–IV for Shags, Kittiwakes, Murres, and
Razorbills, respectively), we predicted qh;i, the ratio of the
expected intensity of locations kh,i from the focal breeding
site h to the sum of those from all other sites in the region

qh;i ¼
kh;iNhP

k 6¼h
kk;iNk

(9)

We then determined whether adding this covariate to
the usage models improved their performance.
We next considered whether the addition of environ-

mental indices describing habitat improved model perfor-
mance (Wakefield et al. 2009). We identified candidate
biophysical covariates meeting two criteria: first, that

data coverage was sufficient to allow seabird distribu-
tions to be estimated throughout the waters of Britain
and Ireland, and second, that previous studies had estab-
lished links between the covariate (or the phenomenon it
quantifies) and the foraging behavior or distribution of
the study species or their prey. As noted above, each
model level requires a separate set of quadrature points.
Hence, although we considered both static and dynamic
covariates, we averaged monthly mean dynamic covari-
ates over the study period (May–July 2010–2014;
Appendix S1: Fig. S2) to maintain the number of data,
and thereby computing time, within tractable limits. We
then determined the value of environmental covariates at
each quadrature point. We considered (1) depth
(ETOPO2 Global Relief 2v2, provided by the U.S.
Department of Commerce, National Oceanic and Atmo-
spheric Administration, National Geophysical Data Cen-
ter, 2006); (2) seabed slope, calculated from the latter in
ArcGIS 10 (ArcGIS10 manufactured by ESRI based in
Redlands, California, USA); (3) minimum distance to the
coast, calculated in ArcGIS 10; (4) the proportion of
gravel; and (5) the ratio of sand to mud in seabed sedi-
ments, derived from British Geological Survey 1:250,000
maps (available online; see Appendix S1);14 (6) the poten-
tial energy anomaly (PEA), which quantifies the intensity
of thermohaline stratification; and (7) the proportion of
time during which the water column was stratified, both
estimated using UK Met Office FOAM AMM reanalysis
data (available online, see Appendix S1);15 (8) AVHRR
sea surface temperature (SST), supplied by the Natural
Environment Research Council Earth Observation Data
Acquisition and Analysis Service (NEODAAS); (9) stan-
dardized sea surface temperature (sSST), calculated on a
monthly basis by subtracting the mean SST in the study
area and dividing by its standard deviation, which is an
alternative index of stratification (Wakefield et al. 2015);
(10) thermal front gradient density (TFGD), estimated
following (Scales et al. 2014) using AVHRR SST to pro-
vide an index of the mean intensity and persistence of
thermal fronts (Miller and Christodoulou 2014); and
(11) net primary production (NPP) estimated and sup-
plied by NEODAAS using MODIS chlorophyll and pho-
tosynthetically available radiation data. For further
details of candidate covariates and our rationale for their
consideration, see Appendix S1: Table S2 and reviews by
Hunt (1997), Mann and Lazier (2006), and Wakefield
et al. (2009). In brief, the phenomena described by these
covariates may affect our study species’ distributions
either by modulating lower trophic level production
(depth, seabed slope, indices of stratification, SST,
TFGD, NPP [Begg and Reid 1997, Mann and Lazier
2006, Scott et al. 2010, Carroll et al. 2015]); by physically
aggregating prey (indices of stratification, TFGD, and
indirectly SST and depth; Lefevre 1986, Begg and Reid
1997, Mann and Lazier 2006, Embling et al. 2012); or

14 http://digimap.edina.ac.uk
15 http://marine.copernicus.eu/

2080 EWAND. WAKEFIELD ET AL.
Ecological Applications

Vol. 27, No. 7

http://digimap.edina.ac.uk
http://marine.copernicus.eu/


due to the habitat preference of prey species, especially
Ammodytidae and Clupeidae (depth, coast distance, sed-
iment, indices of stratification [Whitehead 1986, Holland
et al. 2005, van der Kooij et al. 2008]).
In order to establish in what order to add environmen-

tal covariates to models, we first determined the
improvement in performance afforded by adding each
singly to the best model resulting from the previous
steps. Based on previous work (Wakefield et al. 2011,
2015) and exploratory analyses we considered log and
square-root transformations of some covariates
(Appendix S1: Table S2). In order to model potential
variation in habitat selection in response to among-col-
ony variability in habitat availability, we also considered
interactions between each covariate and its expected
value at each colony. This we define as the covariate’s
mean (hereafter denoted by an overbar) in waters acces-
sible from that colony (i.e., the sea area within dmax).
This partially implements the GFR model proposed by
Matthiopoulos et al. (2011). The full GFR model, in
which variables interact not only with their own colony-
level expectations but those of all other environmental
covariates, proved computationally unfeasible with our
data set (see Appendix S1). We ranked environmental
covariates in order of D BA afforded by the addition of
each covariate (transformed or otherwise) and its GFR
equivalent. We then added these terms sequentially to
the model, retaining them if D BA was positive (step 5).
If two covariates were considered proxies of the same
phenomenon (e.g., stratification) or were otherwise col-
inear, we considered only that ranked highest. Finally,
because relationships between space use and environ-
mental covariates may be nonlinear, we also considered
their second degree polynomials, retaining them if their
addition resulted in an increase in D BA (step 6).

Estimating usage

For each species, we estimated k and thereby the UD
for birds from each Seabird 2000 site s using the fixed-
effects part of the best models (hereafter models V–VIII
for Shags, Kittiwakes, Murres, and Razorbills, respec-
tively). We then calculated the population-level UD
across the study area

UDP;i ¼
X
Allx

UDs;xNs (10)

where Ns is the number of AON at the sth site. Notwith-
standing the comments on standard errors above, we quan-
tified spatial variation in the relative uncertainty of our
model estimates by plotting the coefficient of variation
(CV) of UDP, which we calculated using parametric resam-
pling adapted from Bolker (2008) and Lande et al. (2003).
Assuming that the sampling distribution of b̂ is multivari-
ate normal, we generated 100 random sets of fixed-effects
parameters for each model, predicted the UDP using each
set of parameters, and then calculated its CV.

In order to illustrate how one might use these UDs to
identify marine areas whose statutory protection would
facilitate the functional protection of the existing suite
of colony SPAs, following Eq. 10, we also calculated the
mean UD of birds breeding at sites within each UK
SPA. We identified breeding sites falling within existing
colony SPAs using boundaries downloaded from the
Joint Nature Conservation Committee (available
online).16 For each SPA, we then determined polygons
encompassing the core 50%, 75%, and 90% of estimated
usage as well as the maximum curvature boundaries
(MCBs, see Appendix S1). While MCBs have no ecologi-
cal basis (Perrow et al. 2015), it has been suggested that
they balance the proportion of a population protected
against the extent of the protected area and have been
used by statutory bodies to define boundaries for delim-
iting avian marine protected areas in the UK (O’Brien
et al. 2012). We then overlaid percentage UDs and
MCBs of all species in order to estimate the overall
extent of sea area thus encompassed.

RESULTS

Seabird tracking

We tracked 1,313 birds from 29 colonies for a median
of 2–3 d/bird (Fig. 1, Table 1; Appendix S2: Table S1).
Following resampling to standardize the observation
period to 24 h/bird, data from 80% of Kittiwakes and
93–96% of the remaining species were retained for analy-
sis, totaling 1,153 individuals. Full data are available for
download from the BirdLife Seabird Tracking Database
(available online).17 The duration of deployment was set
by the need to recapture birds before tags became
detached from feathers. Recapture was attempted after
24 h (Kittiwake, where the mantle feathers are relatively
weak) to 48 h (other species). Median foraging trip
length was <24 h in all species (Table 1) so the 24-h
observation window generally spanned >1 trip/individ-
ual. Differences in foraging ranges were marked
among species (Fig. 1): Shags remained relatively close
to their nest sites (median 3.4 km, IQR 1.6–7.5),
whereas Kittiwakes (11.9 km, IQR 4.2–30.9), Murres
(10.5 km, IQR 3.2–19.1), and Razorbills (13.2 km, IQR
5.1–26.2) travelled further from their colonies during
foraging trips.

Explanatory covariates

The addition of distance to colony d improved the per-
formance of usage models for all species (Appendix S2:
Tables S2 and S3) and its effect, which was negative, was
relatively large (Table 2). The addition of A (the cumula-
tive area at d), interacting with indices of sympatric

16 http://jncc.defra.gov.uk/ProtectedSites/
17 http://seabirdtracking.org/mapper/contributor.php?contri

butor_id=950
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TABLE 2. Summary of fixed effects in inhomogeneous Poisson point process models of the density of seabird tracking locations as
functions of colony distance, coastal geometry, intra-specific competition, and habitat.

Model and covariate† Estimate SE‡ z

V. Shag
Intercept �6.092 0.240 �25.43
d �1.254 0.018 �71.52
log(A) �1.239 0.010 �128.17
h0 0.353 0.250 1.41
Gravel 0.512 0.012 41.92
gravel �0.112 0.355 �0.32ffiffiffiffiffiffiffiffiffiffi
PEA

p �1.613 0.028 �58.64
NPP 0.048 0.011 4.22
Coast distance �1.187 0.034 �35.28
SST 0.797 0.046 17.37
SST2 0.474 0.026 18.14
logðAÞ � h0 0.110 0.005 23.02
gravel� gravel �0.627 0.020 �30.78

VI. Kittiwake
Intercept �6.375 0.175 �36.39
d �1.338 0.010 �140.65
log(A) �0.486 0.005 �91.12
h �0.388 0.189 �2.06
log(q) 1.669 0.014 118.75
log(seabed slope) �0.019 0.005 �4.15
log(seabed slope) �1.381 0.261 �5.29
(log(seabed slope))2 �0.161 0.003 �57.53
sSST �1.006 0.007 �143.32
stratification 0.033 0.004 9.21
stratification 0.969 0.308 3.15
log(A) 9 h 0.167 0.004 46.31
log(seabed slope)� log(seabed slope) 0.979 0.009 104.99
stratification� stratification 0.942 0.011 87.33

VII. Murre
Intercept �7.294 0.177 �41.19
d �1.627 0.028 �57.56
log(A) �0.862 0.007 �124.54ffiffiffi
h

p
0.206 0.171 1.21

log(q) 0.929 0.029 32.07
Gravel �0.223 0.005 �46.71ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sand:mud

p �0.184 0.011 �16.42
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sand:mud
p Þ2 �0.196 0.010 �18.80ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sand:mud

p �2.037 0.543 �3.75
TFGD 0.331 0.004 77.63
Coast distance �1.709 0.032 �53.81
coast distance 3.098 0.370 8.38
logðAÞ � ffiffiffi

h
p

0.273 0.005 54.23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sand:mud

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sand:mud

p �0.481 0.034 �14.16
coast distance� coast distance 1.760 0.057 30.68

VIII. Razorbill
Intercept �4.623 0.105 �43.84
d �1.066 0.009 �119.85
log(A) �1.106 0.004 �255.08ffiffiffiffi
N

p
0.552 0.106 5.23

SST �0.083 0.008 �10.60
SST 0.336 0.130 2.58
sand :mud �0.290 0.006 �47.53
(sand:mud)2 �0.266 0.005 �53.46
log(seabed slope) 0.027 0.005 5.30
log(seabed slope) �0.306 0.221 �1.38
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competition, further improved model performance
(Appendix S2: Table S3). In the case of Razorbills, the
square-root of the number of breeding pairs in the home
site was the best index of sympatric competition. For the
other species, competition indices based on the summa-
tion of numbers of breeders inversely weighted by dis-
tance from the focal breeding site best improved model
performance (Appendix S2: Table S2). Models I–IV sug-
gest that, in all species, the rate of decline in usage with
A lessens with increasing sympatric competition
(Table 2; Appendix S2: Tables S2 and S3, Fig. S1). The
inclusion of relative parapatric competition improved
the performance of Kittiwake and Murre usage models
but not those of Shags and Razorbills (Appendix S2:
Table S2). The former species tended to avoid areas in
which the potential density of conspecifics from other
colonies was higher than that from their own colony.
The addition of environmental covariates improved the
performance of all models (cf. Fig. 2; Appendix S2:
Fig. S3) and conditioning some but not all covariates on
their regional means improved performance further
(Appendix S2: Table S4). Cross-validation shows that
the final models for Shags, Kittiwakes, and Murres all
performed similarly well (BA � SD = 0.52 � 0.13,
0.53 � 0.13, and 0.53 � 0.22, respectively) but the per-
formance of the Razorbill model was somewhat poorer
(BA � SD = 0.34 � 0.11). Spatial plots confirm our
expectation that the similarity between observed and
predicted utilization distributions was greatest for colo-
nies from where more birds were tracked (Appendix S2:
Fig. S3).
The effects of many environmental covariates were

comparable in magnitude to those of colony distance,
cumulative area, and competition (Table 2). Taking the
environmental covariates retained during model selec-
tion in order of their effect sizes, these suggest that Shags
tend to use relatively mixed waters (i.e., low PEA) close
to the coast. In areas where gravel is scarce, they use rel-
atively gravelly substrates but this is reversed in more
gravelly areas (Appendix S2: Fig. S5). Shags’ usage with
respect to SST was quadratic, with a tendency to visit
areas where SST was either warmer or cooler than the
average (Table 2; Appendix S2: Fig. S5). Shags also
manifested a weak preference for areas of high NPP.

Usage by Kittiwakes with respect to seabed slope and
stratification was complex: in areas where the mean
seabed slope was low, they tended to avoid steep bathy-
metric relief but this preference was reversed somewhat
in areas where the mean slope was high (Appendix S2:
Fig. S5). Similarly, in areas where the mean occurrence
of stratification was low, Kittiwakes avoided stratified

FIG. 2. Percentage at-sea utilization distribution (UD) of
seabirds breeding within Britain and Ireland during late incuba-
tion/early chick-rearing estimated as functions of colony dis-
tance, coast geometry, intra-specific competition, and habitat
(models V–VIII). Warmer colors indicate higher usage. Iso-
pleths indicate relative coefficient of variation (CV) of the esti-
mated probability density (gray, no environmental data).

TABLE 2. (Continued)

Model and covariate† Estimate SE‡ z

logðAÞ � ffiffiffiffi
N

p
0.331 0.003 123.37

SST� SST �0.882 0.010 �90.40
log(seabed slope)� log(seabed slope) �0.525 0.015 �34.22

Notes:Numbers in parentheses after model name are the numbers of sites and birds).
†Covariates standardized prior to model fitting; d, distance by sea from the colony; A, cumulative area at distance d; h, inverse-

distance-weighted number of conspecific breeders; h0, inverse-distance-weighted square-root number of conspecific breeders;
N, number of conspecific breeders at the home site; q, density of birds from the home site relative to those from all other sites;
NPP, net primary production; PEA, mean potential energy anomaly; SST, mean sea surface temperature; sSST, mean standardized
SST; TFGD, thermal front gradient density. Overbars indicate the mean of the covariate in water accessible from each colony.
‡Relative standard errors.
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waters, whereas in more frequently stratified areas, they
tended to avoid mixed waters.
In areas with low regional mean coastal distance (i.e.,

archipelagos) Murres used areas close to the coast,
whereas in areas with less complex coastlines they tended
to forage further from land (Table 2; Appendix S2:
Fig. S5). In regions with a relatively high proportion of
sand in the substrate, Murres preferred sandy areas but
this preference reversed in less sandy regions. Murres also
showed a weak preference for frontal regions and sub-
strates containing a relatively low proportion of gravel
(Table 2). Razorbills used areas with higher SSTs in
regions with relatively cool surface waters, whereas in
warmer regions the opposite was true (Appendix S2:
Fig. S5). In regions with relatively low seabed relief they
tended to select areas with steep relief and vice versa.
Razorbills’ habitat preference with respect to the sand:
mud ratio of the substrate was quadratic, peaking just
below intermediate values (Appendix S2: Fig. S5).

Estimated population-level distributions

Raster files of space use during late incubation and
early chick-rearing from all of the region’s colonies esti-
mated using models V–VIII are available for download
from the Data Archive for Marine Species and Habitats
(DASSH; available online).18 Composite usage maps pre-
dict that breeding Shags, Kittiwakes, Murres, and
Razorbills forage mainly within 100 km of the coast of
Scotland, primarily to the north and east of the main-
land in the North Sea, and around the Northern Isles
(Fig. 3a; Appendix S2: Fig. S7). For all species, 90% of
the UK regional population’s UDs also included waters
in the southern North Sea; Dublin Bay and the North
Channel of the Irish Sea; as well as waters surrounding
Islay; the northern Minch; and isolated islands north-
west of Scotland (Appendix S2: Fig. S7). The estimated
distributions of Shags, which is the least wide-ranging of
the study species, largely reflects that of its colonies (cf.
Figs. 1 and 2). In contrast, that of Kittiwakes is more
pelagic, with activity more patchily distributed offshore
(Fig. 2). In addition to core areas mentioned above,
usage hotspots included a large area southeast of Flam-
borough Head and the northern Norfolk Banks; the cen-
tral Irish Sea; and Galway Bay, west of Ireland. Of the
two Auks, our models suggest that Murres forage closer
on average to their colonies (Fig. 2), outnumbering
Razorbills in many coastal areas and in the vicinity of
the Celtic Sea front. In contrast, Razorbills predominate
in the North Channel and much of the Minch
(Appendix S2: Fig. S8).

DISCUSSION

Several recent studies have assimilated tracking data
from multiple colonies in order to map and understand

seabirds distributions (BirdLife International 2004, Block
et al. 2011, Wakefield et al. 2011, 2013, Ramos et al.
2013). However, this is the first to model how colony-level
distributions vary due to the combined effects of sym-
patric and parapatric conspecific interactions, coastal
geomorphology, and regional habitat availability. By
tracking and modelling the space use of Shags, Kitti-
wakes, Murres, and Razorbills from a sample of colonies
around Britain and Ireland, we estimated the coarse-scale
(tens of kilometers) distribution of these species at sea
from all of colonies in the region. Moreover, by combin-
ing these results, we were able to map the at-sea distribu-
tion of each species’ breeding population across a study
area extending over ~1.5 million km2 (Fig. 2). Until
recently, it was only practicable to attempt to estimate the
distributions of seabirds over such wide areas at compa-
rable resolutions by surveying birds from boats or planes
(Stone et al. 1995, Bradbury et al. 2014). However, these
methods generally fail to discriminate among birds from
different colonies or life history stages (e.g., breeders vs.
non-breeders). Our results therefore provide unprece-
dented insights into marine distributions of breeding
seabirds.
We modelled the occurrence of tracking locations as

an inhomogeneous Poisson point (IPP) process (Cressie
1993), which is a computationally efficient and, it has
been argued, natural method of treating presence-only
data (Warton and Shepherd 2010, Aarts et al. 2012,
Renner et al. 2015). We discuss our approach in more
detail in Appendices S1 and S3. However, it is pertinent
to highlight two caveats to our results. First, due to the

FIG. 3. Predicted multi-species hotspots. (a) Overlap between
estimated core areas used by the four study species during late
incubation/early chick-rearing. Colors indicate number of over-
lapping species’ core areas (75% of the species’ utilization distri-
bution, UD; see Appendix S2: Fig. S7 for equivalent plots using
the 50% and 90% UDs). (b) Combined usage by all four study
species breeding at Special Protected Area (SPA) colonies. Colors
indicate areas supporting 50%, 75%, and 90% of the estimated
marine utilization distribution of one or more species breeding
within existing colony-based SPAs. Red lines indicate areas
contained within maximum curvature (MC) boundaries (O’Brien
et al. 2012) for one or more species and black lines boundaries
between national Exclusive Economic Zones.
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large volume of data involved in our analysis, only rela-
tively simple models were computationally tractable and
therefore not all correlation structures inherent to the
data (e.g., serial autocorrelation within individuals;
Aarts et al. 2008) were modelled. Hence, although we
presume that our parameter and usage estimates are
unbiased their associated uncertainty is likely to be
underestimated. Second, the likelihood estimation tech-
nique we used is approximate (Berman and Turner
1992). We therefore opted to select among models by
k-folds cross validation, rather than using penalized
information criteria, such as AIC. The k-folds cross vali-
dation technique is robust to over-fitting when the num-
ber of data is large, and the field of candidate models
relatively small (Arlot 2010). However, our models are
optimized for prediction, rather than parsimony, so the
biological inferences drawn from them here are tentative.

Distribution with respect to colony distance and
competition

Space use by all four study species declined with
distance from the colony (Table 2), supporting the
hypothesis that central-place foragers minimize distance-
dependent travel costs (Orians and Pearson 1979). Our
results also support the hypothesis that colonial central-
place foragers seek to minimize density-dependent intra-
specific competition (Ashmole 1963, Lewis et al. 2001,
Wakefield et al. 2013): in all species, the rate of decline
in usage with cumulative area at distance decreased as
the number of sympatrically breeding conspecifics
increased (Appendix S2: Table S3, Fig. S1). Although
this echoes the observation that foraging range is posi-
tively dependent on colony size in many seabirds (Lewis
et al. 2001, Wakefield et al. 2013), it also demonstrates
that conspecific density is dependent not only upon
numbers of birds but the availability of suitable habitat
(most simply, open sea). In short, models V–VIII show
that birds foraging from a colony with limited access to
the sea (e.g., those located in inlets) travel further on
average than those from a colonies of the same size sur-
rounded by open water (i.e., on isolated islands;
Appendix S2: Figs. S4 and S5). For the purposes of our
analysis, we recognized that colonies as defined in the
Seabird 2000 census (Mitchell et al. 2004) might not cor-
respond to functional units. Our results suggest that, in
all species except Razorbills, this is indeed the case
(Appendix S2: Table S2). For the other three species, we
found that sympatric competition was better quantified
by the sum of the inverse distance-weighted number of
conspecifics breeding in the area. We hypothesize that
this is because the intensity of potential competition
from any one conspecific declines as a function of
distance to its nest.
It has been hypothesized that seabirds foraging from

adjacent colonies segregate in space if potential density
of competing conspecifics is high (Wakefield et al.
2013). Segregation among the UDs of colonies has been

observed in several species (Masello et al. 2010, Wake-
field et al. 2013) but evidence for this phenomenon in
our system was mixed: in accordance with the density-
dependence hypothesis (Wakefield et al. 2013), Kitti-
wakes and Murres avoided the areas at which the null
ratio of the density of birds from the home colony to
those from other colonies was low but Shags and Razor-
bills did not. Among-colony segregation is also evident
in Kittiwake populations geographically disparate from
the UK (Ainley et al. 2003, Paredes et al. 2012) and may
therefore be widespread in this species but this is the first
time that the phenomenon has been reported in Murres.
Given the close taxonomic and functional affinities
between Razorbills and the latter species it is perhaps
surprising that terms describing among-colony segrega-
tion were not retained during model selection for Razor-
bills. This may be because a relatively large proportion
(48%) of the Razorbills in our study were tracked from
the Northern Isles (Fig. 1; Appendix S2: Table S1),
where populations of this and other seabird species have
been in decline for the past decade (JNCC 2014) due to
declines in forage fish availability (Cook et al. 2014).
Razorbills from this region travelled much further (me-
dian range 62.7 km, IQR 39–87) than those from other
areas (median 20 km, IQR 11–28), possibly due to local
food shortages. It is hypothesized that patterns of spatial
segregation are, in part, culturally perpetuated via infor-
mation transfer among conspecifics (Wakefield et al.
2013). If so they may become unstable in a declining
population. The apparent lack of spatial segregation
among Shags from different breeding sites is notable
given that this phenomenon occurs in several other
members of the Phalacrocoracidae, such as Phalacroco-
rax atriceps, P. magellanicus, and P. georgianus (Wanless
and Harris 1993, Sapoznikow and Quintana 2003).
However, in comparison to these species, European
Shags breed in relatively dispersed colonies throughout
much of their range in Britain and Ireland so density-
dependent competition among breeding aggregations
may be insufficient to cause segregation of foraging
areas. This could be viewed as an extreme form of segre-
gation, where inter-colony spacing generally exceeds the
species’ maximum foraging range. Additionally, in
Britain and Ireland, Shag colonies tend to be small, fur-
ther reducing inter-colony competition. For example, in
the Isles of Scilly, where Shags breed at very low densi-
ties, birds from different breeding sites forage in com-
mon areas (Evans et al. 2015), as suggested by model V
(Appendix S2: Fig. S3). Notwithstanding these com-
ments it is possible that our analysis could not detect
among-colony foraging segregation in Razorbills and
Shags, for two reasons. First, we were unable to track
these species from multiple large and closely adjacent
breeding sites, where theory suggests segregation is most
likely to occur (Wakefield et al. 2013). Second, the cen-
sus data we used to estimate intraspecific competition
was collected 8–16 years before our tracking campaign.
Populations of all species in our study are in a state of
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flux: over the past 15 years, Shags have declined by
~30% throughout the region, while Razorbill have
declined in the Northern Isles (JNCC 2015). Further
tracking from pairs of large, closely adjacent and
recently censused colonies would be required to conclu-
sively establish the degree to which spatial segregation
occurs among colonies of Shags and Razorbills.
In modelling competition, we made the assumption

that seabirds avoid areas of high conspecific density.
This is consistent with established foraging theories (the
ideal free distribution, optimal foraging, etc.) and is sup-
ported by empirical evidence at scales of tens of kilome-
ters and above (Ford et al. 2007, Wakefield et al. 2013).
However, at finer scales, local enhancement (when indi-
viduals searching for prey are attracted to feeding con-
specifics) may cause seabirds to cluster (Fauchald 2009).
In our modelling framework, this would manifest as
unexplained spatial autocorrelation. Similarly, memory-
based foraging or site fidelity, which cause individuals to
return repeatedly to the same area (Irons 1998, Wake-
field et al. 2015), would result in unexplained temporal,
as well as spatial, autocorrelation within individuals.
Techniques have been developed for modelling some of
these sources of autocorrelation (Marzluff et al. 2004,
Aarts et al. 2008, Johnson et al. 2013) but as far as we
are aware, no study on a colonial central-place forager
to date has been able to model all of these correlation
structures simultaneously. This is not only because of
the complexity of the task but because the underlying
mechanisms are still poorly understood. Conversely
however, modelling these dependencies in a hierarchical
framework would provide important insights into the
foraging strategies employed by seabirds and similar
taxa. Recent methodological advances, especially in
Integrated Nested Laplace Approximation, may soon
make this possible and we look forward to further devel-
opment of these techniques (Blangiardo et al. 2013).

Distribution with respect to habitat

Our principal aim was to estimate usage at sea, irre-
spective of behavior. Had we modelled foraging loca-
tions only, stronger associations than we report might be
expected between habitat and distribution (Wakefield
et al. 2009). Similarly, considering time-averaged envi-
ronmental covariates, though expedient, may have
reduced the ability of our models to resolve dynamic
environmental drivers of distribution if seabirds closely
track spatiotemporally unpredictable prey. However,
there is increasing evidence that, at the coarse scale, tem-
perate neritic seabirds forage in individually consistent
locations, both within and across breeding years (Irons
1998, Weimerskirch 2007, Woo et al. 2008, Wakefield
et al. 2015). This may be because shelf sea oceanography
is predictably structured by seasonal insolation and tidal
stirring (Simpson et al. 1978), suggesting that time-aver-
aged environmental covariates may be reasonable prox-
ies for prey distribution.

The effects of habitat on spatial usage in our models
were comparable in magnitude to those of foraging costs
and competition (Table 2). Moreover, the habitat prefer-
ences indicated by models V–VIII accord with current
understanding of the foraging ecology of the study spe-
cies. For example, covariates describing substrate were
retained only in models of habitat use for the three div-
ing species (Shags, Murres, and Razorbills). Shags and
Murres forage both at or near the seabed and in the
water column so substrate type may affect prey availabil-
ity directly (Watanuki et al. 2008, Thaxter et al. 2010).
Razorbills forage at shallower depths but in common
with all species in the study, prey primarily on sandeels,
whose distribution varies with sediment coarseness and
silt content (Wright et al. 2000, Holland et al. 2005).
Previous studies suggest that sympatrically breeding
Razorbills and Murres, which are closely related, do not
segregate in space (Thaxter et al. 2010, Linnebjerg et al.
2013). However, our results suggest some landscape-
scale niche partitioning: Murres outnumber Razorbills
in inshore waters of the North Sea, the Northern Isles,
and the Irish Sea, whereas Razorbills predominate in the
Western Isles. Notably, our models also suggest a pre-
ponderance of Murres in the vicinity of the Celtic Sea
front, which may reflect divergent foraging adaptations
in these species (Appendix S2: Fig. S8).
Covariates best describing the distribution of Kitti-

wakes, which are obligate surface feeders, either
described properties of the water column (stratification
and relative sSST) or the morphology of the seabed
(slope), which affects turbulent mixing. Presumably,
these covariates were retained because they describe
physical mechanisms that affect prey availability indi-
rectly, either by enhancing production at lower trophic
levels (e.g., tidal stirring resupplies nutrients to the
photic zone; Scott et al. 2010, Carroll et al. 2015) or by
advecting prey to the surface (Embling et al. 2012, Cox
et al. 2013).
Species distribution models fitted to data collected in

one area may predict usage poorly in another where habi-
tat availability differs. To account for this effect we consid-
ered models in which the response of birds to candidate
environmental covariates was conditioned on their regio-
nal means (i.e., a partial implementation of a Generalized
Functional Response [GFR] to resource availability; Mat-
thiopoulos et al. 2011). GFRs with respect to some but
not all covariates improved model performance, indicat-
ing that seabirds responded non-linearly to changes in the
availability of some environmental covariates. This is per-
haps unsurprising, given the oceanographically complex
nature of the study area (Appendix S1: Fig. S2). For
example, Murres tend to forage far from the coast in areas
where the mean distance to the coast was high, such as
the North Sea, which has a relatively simple geometry. In
areas where the mean distance to the coast was low, such
as the geometrically complex Northern and Western Isles,
this relationship was reversed (Table 2; Appendix S2:
Fig. S5). Presumably, this reflects differences in the
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dominant physical drivers of prey distribution or the type
of prey available to Murres in these areas.

Conservation implications

For conservation measures to be effective they must be
evidence-based so there is an urgent need to map the dis-
tributions of seabirds at sea and to understand how these
are shaped by intrinsic and extrinsic factors (Lewison
et al. 2012). We estimated seabird distribution using data
on the size and location of all known colonies in Britain
and Ireland. However, missing substrate data meant that
we did not estimate usage by Shags, Murres, and Razor-
bills outside the UK Exclusive Economic Zone (EEZ) or
for parts of the Northern and Western Isles (Fig. 2).
Moreover, we did not have access to contemporaneous
data on conspecific colonies in countries bordering the
study area. Although these may interact with colonies in
Britain and Ireland, their relatively small size and large
distance from Britain and Ireland suggest that any
density-dependent competition from these colonies is
likely to be negligible. Notwithstanding these caveats, the
performance of our time-invariant models suggest that
the factors determining the marine distribution of breed-
ing seabirds in Britain and Ireland are sufficiently consis-
tent across time to permit reliable estimation of area
usage from biotelemetry, environmental covariates, and
central-place foraging theory, which has important con-
sequences for identification of priority areas for conser-
vation measures. To date, potential offshore SPAs for
European seabirds have been identified largely using at-
sea transect survey data (Skov et al. 1995, Kober et al.
2012) and progress to designate offshore protected areas
has been slow (BirdLife International 2010). Moreover,
because it is impossible to derive colony-specific distri-
bution estimates from at-sea observations, tracking is
increasingly used to obtain the colony-level seabird dis-
tributions (Wakefield et al. 2011, Raymond et al. 2015)
that are required for the assessment of impacts of marine
industries on protected breeding colonies. Unfortunately,
it is neither practicable to track widespread species from
all their colonies, nor clear how usage can be interpo-
lated from surveyed to unsurveyed colonies (Aarts et al.
2008, Matthiopoulos et al. 2011, Torres et al. 2015).
Thaxter et al. (2012) suggested that, until better infor-
mation becomes available, a pragmatic approach (the
“radius” method) is to assume that seabirds are dis-
tributed uniformly out to some putative maximum range
from their colonies. However, as our analysis and others
confirm (e.g., Wakefield et al. 2011, 2013, Catry et al.
2013, Dean et al. 2015), seabird density declines with dis-
tance from the colony. Moreover, density-dependent
competition, coastal morphology, and habitat preference
result in highly non-uniform distributions. We show that
these effects can be estimated by tracking birds from a
sample of colonies and fitting IPP models, structured as
partial GFRs (Matthiopoulos et al. 2011), to the result-
ing data. The ability of these models to estimate seabird

distributions at unsampled colonies is a major innova-
tion. Moreover, an advantage of IPP models over the
logistic presence/pseudo-absence models latterly applied
to tracking data is their interpretability (Aarts et al.
2012, Renner et al. 2015). Our models predict “occur-
rences at sea per day per individual” (i.e., incorporating
information on both activity budget and space use),
which is directly proportional to the average amount of
time birds are expected to spend at a location and there-
fore of direct utility to conservation managers. The areas
of intensive usage we identified, especially those used by
birds from SPA breeding colonies, may warrant consid-
eration for statutory protection following the principles
recently outlined by Wilson et al. (2014). Moreover, the
provision of colony-level predictions allows the potential
impacts of anthropogenic and natural processes to be
apportioned to specific colonies much more accurately
than is possible using the radius method. This will be of
particular importance in assessing potential impacts
from offshore windfarms, which are projected to increase
10-fold in European shelf seas in the next decade, with
the majority being constructed in UK waters (Infield
2013). Current assessments of the potential barrier, dis-
placement, and collision impacts, both at the individual
windfarm level and the region-wide level, rely either on
data from boat or aerial surveys (Furness et al. 2013,
Maclean et al. 2013), tracking from very few colonies
(Perrow et al. 2006) or the radius method (Thaxter et al.
2012, Bradbury et al. 2014). As such, potential impacts
cannot be reliably apportioned to breeding colonies,
hampering attempts to predict their demographic conse-
quences (Bailey et al. 2014). Similarly, the impacts of oil
pollution and bycatch may be highly localized (Williams
et al. 1995, �Zydelis et al. 2013) so colony-level distribu-
tion estimates will facilitate spatial planning decisions
that more effectively balance seabird conservation with
competing interests, by linking marine aggregations of
seabirds to specific colonies. The methods presented here
demonstrate the utility of tracking data to estimate sea-
bird distribution at national scales and further data are
now required to allow the application of this modelling
approach to other breeding seabird species. Moreover,
by combining our results across species, potential areas
of high conservation priority are revealed (Fig. 3;
Appendix S2: Fig. S7). It is clear that, within Britain and
Ireland, the core areas of usage of all four study species
overlap within most of the coastal waters in Scotland.
Areas of high multi-species usage may warrant particu-
lar attention, since both the vulnerability to threats and
the potential benefits of conservation measures, are
likely to be highest there. The regions identified as sup-
porting the core 90% UD of at least three of the species
considered here (Appendix S2: Fig. S7b) correspond well
to those areas identified as of greatest international
importance for 30 seabird species in the North Sea
across all seasons (Skov et al. 1995), indicating the likely
importance of these areas for a broad range of avian
taxa.
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Inclusion of density-dependent competition in our
models increased their predictive performance. How-
ever, this improvement over previous similar analyses
(Wakefield et al. 2011, Raymond et al. 2015) was only
possible because the sizes of most seabird colonies in
Britain and Ireland are known (Mitchell et al. 2004). In
contrast, seabird colonies in many regions have not been
censused (Croxall et al. 2012). Obtaining accurate esti-
mates of colony size should be a priority for wildlife
managers intending to use tracking data to estimate the
distribution of seabirds from unsampled colonies. More-
over, our results suggest that distribution will change if
colony sizes alter. Updating colony counts periodically
would allow model-based distribution estimates to be
revised without necessarily needing to collect more
tracking data.
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